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SUMMARY

The dynamic behaviors of railway ballast under cyclic loading are simulated with discrete element method
(DEM). Dilated polyhedra are constructed based on the Minkowski sum operator in order to resemble the
irregular shapes of ballast particles. The polyhedral particle generation, contact detection between particles
and contact laws are presented. Ballast box tests with periodic lateral boundaries are conducted to simulate
the dynamics of the sleeper and ballast particles. The settlement and effective stiffness of ballast bed are in-
vestigated under cyclic loadings with five distinct frequencies. The settlement of ballast bed is significant in
the first several cycles and increases with the number of cycles gradually. The higher frequency loading gen-
erates larger displacement in the same simulation time. The effective stiffness of ballast bed increases grad-
ually. To study the effect of particles’ sharpness, dilated polyhedra with different dilating radii and spherical
particles are also developed. Simulation results show the sharper the ballast particles are, the smaller the pro-
duced settlement. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Under the long term action of train loadings, the elastic stiffness of railway ballast track is reduced,
accompanying the increase of accumulated settlement of ballast bed. Investigations on dynamic
behaviors of ballast bed under cyclic loadings are helpful in improving the ballast bed performance
and design. Previous studies on the deformation and degradation of ballast bed include field
measurements [1, 2] and laboratory model tests [3–5] and numerical simulations [6, 7].

For numerical simulations of dynamic behaviors of ballast bed, continuum approaches have been
applied to determine the stress distribution and deformation [2, 8, 9]. However, the ballast bed is
inherently a large collection of discrete particles. Properties of the constitutive ballast particles, such
as the shape and gradation, unavoidably influence the dynamic behaviors of ballast bed as a whole.
Unfortunately, continuum methods cannot take into account these microscopic properties. Recently,
the discrete element method (DEM), as a powerful tool for granular materials modeling, has been
applied widely to simulate the dynamic behaviors of ballast [10–14]. In the DEM simulations of
ballast, clumps of overlapping spheres or bonding spheres were generated to resemble the irregular
shapes of ballast particles [13, 15–18]. The overlapping method has the advantage of describing the
real sizes and irregular shapes of ballasts exactly [7, 16, 19]. The bonding method is more suitable
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for the simulation of irregularly shaped ballast particle’s breakage, because it is capable of describing
arbitrary shapes and allowing breakage under external loadings at the same time [6, 7, 11, 15, 20]. In
both methods, one ballast particle may be constructed with hundreds or thousands of spheres [21]. The
computational efficiency is tremendously lowered because of the huge number of spheres used in the
DEM simulations. This limits its engineering applications. Therefore, polygonal and polyhedral
models were developed to model the irregular ballast particles [12, 22, 23].

Recently, dilated polyhedral models, more efficient and accurate for programming and
computation, have been developed to model the irregular rock rubbles. The generation of a
dilated polyhedron element is based on the theory of Minkowski sum with the combination of
Voronoi diagram [24–29]. A basic polyhedron is generated using Voronoi diagram with defined
sizes and shapes randomly. The polyhedron is dilated by placing the center of a sphere at every
point of the polyhedron surface based on the classical concept of Minkowiski sum. In this way,
the vertices and edges of the original polyhedron become spheres and cylinders with
hemi-spherical ends. The sharpness of a dilated polyhedron can be adjusted by changing the
dilating sphere radius. The inter-element contact detection and contact force calculation can be
performed succinctly and are easy to implement.

For the investigations of railway ballast dynamic behaviors, triaxial tests were carried out to identify
the maximum stress level, the strength and stiffness changes during the cyclic loading process [5, 30,
31]. The triaxial tests were also used to determine the breakage ratio of ballast particles under different
loading levels [32, 33]. The loading frequency plays a significant role in the settlement and elastic
behaviors of ballast materials. The higher the loading frequency is, the more settlement the ballast
bed performances [34]. On the other hand, ballast box tests were also conducted to study the
dynamic behaviors of ballast under the train loading and tamping. Compared with triaxial tests,
ballast box tests correlate with ballast field performance, providing data on the settlement, stiffness
and amount of degradation [14].The DEM simulations were also performed and compared with the
physical experiments [15]. Both physical tests and DEM simulations show box tests are suitable to
investigate the dynamic behaviors of ballast under cyclic loading. Moreover, mechanical properties
of ballast bed are greatly influenced by the particles shapes and loading frequencies of cyclic
loadings [6, 7, 32, 35].

Therefore, dilated polyhedral particles are generated to resemble the irregularly shaped ballast in this
study. The contact detection and contact force law of dilated polyhedra are presented in detail. The
dynamic behaviors of ballast are simulated under cyclic loadings with various frequencies. The
settlement and effective stiffness of ballast bed are studied and analyzed. Moreover, the influence of
ballast particles’ sharpness is studied.
2. DISCRETE ELEMENT MODEL WITH DILATED POLYHEDRA

To describe the irregular shapes of ballast particles, dilated polyhedral elements are constructed. The
inter-locking effect of irregular ballast can be modeled. For the contact detection of ballast particles,
various contact patterns are developed considering the vertices, edges and faces of polyhedra. The
inter-element contact force model is also introduced here.

2.1. Construction of dilated polyhedral particles

To construct a dilated polyhedral element, a basic polyhedron is defined first with vertices, edges and
faces. The polyhedral faces are generated with a series of triangle planes. A sphere with radius r is then
adopted to sweep all the vertices, edges and faces of the polyhedron without changing their relative
orientations [26]. The center of the dilating sphere is located on the surface of the basic polyhedron.
Consequently, the original vertices turn into spheres. The edges turn into cylinders with hemi-
spherical ends. The faces turn into plates with a certain thickness. With this approach, a dilated
polyhedral element is generated with rounded edges and corners.

Figure 1(a) shows a dilated polyhedron, including 30 vertices, 84 edges and 56 faces. The average
polyhedral radius is 25mm, which is calculated as the arithmetic mean of all the distances from the
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2016)
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(a) Schematic of a dilated polyhedron generation

(b) Dilating radius r =0.5mm (c) Dilating radius r =20mm

Figure 1. Generation of a dilated polyhedron.

DISCRETE ELEMENT MODELING OF DYNAMIC BEHAVIORS OF RAILWAY BALLASTS
vertices to the mass center of the particle. The sharpness of the dilated polyhedron is dominated by the
dilating sphere radius. Figure 1(b) and (c) show clearly the two dilated polyhedral elements constructed
with the same basic polyhedron but with different sphere radii of 0.5mm and 20mm, respectively. The
larger the sphere radius is, the smoother the dilated polyhedron is. The dilated polyhedron returns to its
basic polyhedron as the sphere radius approaches zero.

Figure 2 shows various dilated polyhedra generated. The above particle generation method results in
contact simplicity. However, the computational efficiency depends on the numbers of vertices and
faces of particles. The more the numbers of vertices and faces, the more contact detections and
calculations will be. Also, an appropriate contact detection algorithm is introduced to reduce the
computational efficiency to O(N), where N is the number of vertices [26, 28, 29].
2.2. Neighbor search and contact detection of dilated polyhedral elements

Two sets of Eulerian coordinates, global and local, are chosen to describe the position and orientation
of a polyhedron. The origins of the two coordinates are located at the computational domain and the
mass center of the dilated polyhedron, respectively. The global coordinate system is used to describe
the particle’s translation motion and mass center, while the local one is used to describe the
rotational motion of the particle. The quaternion approach is adopted to transfer the motion and
force information between the two coordinates [17, 36].

1. Neighbor search

All dilated polyhedral elements are sorted and stored based on their mass center positions in a three
dimensional Cartesian grids. The grid length is slightly larger than the maximum size of all particles. A
list of all elements potentially in contact is determined first through its surrounding grids.

A distance parameter ε is introduced here. When the distance between two dilated polyhedral
elements δij is less than ε, this neighbor pair is added in the neighbor list. In this study, the
Figure 2. Generated dilated polyhedra.
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parameter ε is proportional to the relative normal velocity of the two elements and the intervals of the
neighborhood.

The distance between any two dilated elements can be determined as,

δij ¼ Δij-ri � rj (1)

whereδijis the distance between the two dilated polyhedra i and j, Δij is the distance between the two
corresponding basic polyhedra and ri and rj are the dilating sphere radii of the two dilated elements,
respectively.

2. Contact detection

The dilated polyhedral model is composed of vertices, edges and faces. The possible contact modes
can be classified into three categories: edge–edge contact, vertex–face contact and face–face contact.

For an edge–edge contact as shown in Figure 3(a), the contact detection is related to the
determination of the shortest distance vector Δ between the two line segments P1P2 and P’

1P
’
2 as

shown in Figure 3(b), where P1P2 and P’
1P

’
2 are the axes of the two edges, and PC1 and PC2 are

intersections of the distance vector Δ and the two edges. Thus, the distance δ between the two
elements is calculated as δ= |Δ|� ri� rj. If δ< 0, the two particles are in contact.

If point PC1 or point PC2 is at the end of line segments, the edge–edge contact becomes vertex–edge
contact as shown in Figure 3(c). The projection of the sphere center O1 on the edge is first obtained and
defined as point P as shown in Figure 3(d). The corresponding distance is calculated as δ= |PO1| - ri� rj.
If both of the intersections are at the end of line segments, the edge–edge contact becomes vertex–vertex
contact.

For a vertex–face contact as shown in Figure 4(a), the projection of the sphere center O1 on the face
is first defined as point P as shown in Figure 4(b). If point P is in the plane, the two dilated polyhedra
may be in contact. The corresponding distance is calculated as δ= |PO1| - ri� rj. If δ<0, the two
particles are in contact.

A face–face contact is shown in Figure 5. This kind of contact actually has infinite number of
contact points. To simplify the calculations, it can be simplified as multiple-point contacts on the
contacting faces. Only those points belonging to edge–edge and vertex–face contacts are considered
in the DEM simulations. All of these contact points generate a polygon, and the area of the polygon
Figure 3. Edge-edge contact of two dilated polyhedra.
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Figure 4. Vertex-face contact of two dilated polyhedra.
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can be calculated. In this case, the contact area is a quadrilateral. An edge–face contact is included in
the face–face contact.

2.3. Contact force model

For the interaction between any two particles in contact, elastic contact forces are considered in the
normal and tangential directions. With the overlap determined during contact detection, the elastic
normal contact force is calculated as,

Fn ¼ knδ (2)

where Fn is the elastic normal contact force, kn is the normal stiffness and δ is the overlap between the
two contacting polyhedra determined in the previous section.

For edge–edge and vertex–face contacts, the nonlinear Hertzian contact model is adopted. This
model has been applied widely in the contact simulations of granular materials [37, 38].The
corresponding normal stiffness can be written as,

kn ¼ 4G
ffiffiffiffiffiffiffi
Reδ

p
3 1� νð Þ (3)

where G and ν are the shear modulus and Poisson ratio of granular materials, and Re is the equivalent
radius of the curvature of the contacting particles. In edge–edge contacts, the curvatures are different
for the contacts happening in different relative orientations. The curvature equal to the radius of the
dilating sphere is used to simplify the programming.

For face–face contacts, the change of the contact area induces different overlap. However, this
change is relatively small. Ignoring the influence of the contact area under different deformations,
the linear model is used and the normal stiffness can be written as [39],

kn ¼ AE
2ReN

(4)

where A is the face–face contact area. N is the number of points in contact.
Figure 5. Face-face contact of two dilated polyhedra.
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The elastic tangential contact force is determined with the overlap in the tangential direction, which
can be obtained incrementally in each time step. At time step m, the tangential force vector is calculated
from the tangential force at the previous time step (m� 1), and can be calculated as,

Fm
t ¼ Fm�1

t � k t�Δt VAB � VAB�nð Þ½ � (5)

where Fm
t and Fm�1

t are the tangential forces at time steps m and m�1, respectively. kt is the tangential
contact stiffness, VAB is the relative velocity of the two dilated polyhedra A and B and n is the unit
vector in the normal direction; Δt is the time step.

The tangential stiffness is dependent on the normal force, and can be expressed as [38],

k t ¼ βknand β ¼ 3 1� νð Þ= 2� νð Þ: (6)

The relative velocity of the two dilated polyhedra in contact can be calculated as,

VAB ¼ VA � VB þ rA�ωAð Þ � rB�ωBð Þ (7)

where rA and rB are the position vectors from the sphere center to the contact points, and ωAand ωBare
the angular velocities of particles A and B, respectively.

Based on the Mohr–Coulomb friction law, the tangential contact force is limited with the sliding
friction, and can be written as,

Fm
t ¼ min Fm

t

�� ��;μ Fm
n

�� ��� ��t (8)

where μ is the friction coefficient, and t is the unit vector in the tangential direction in the current
contact.

Damping force is also considered here. It is proportional to the relative velocity,

Fd ¼ 2ς
ffiffiffiffiffiffiffiffi
mkn

p
VAB�n (9)

where m is the mean mass of the two colliding particles, and ς is related to particle’s coefficient of
restitution ε. Based on the theoretical solution for binary contacts, an explicit relationship between ς
and ε can be written as,

ς ¼ �lnε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ ln2ε

p : (10)

With the inter-element contact forces, the moments on the dilated polyhedra can also be determined
by the vector from the mass center of polyhedra to the contact point. With the contact force and
moments obtained at each time step, the velocity and displacement of each dilated polyhedron are
updated step by step. The equations that define translational and rotational motion are standard
central difference equations. The matrix that defines the orientation of each element is calculated
with quaternion approach.
3. DEM SIMULATIONS OF BALLAST UNDER CYCLIC LOADING

The dynamic behaviors of ballast are investigated though ballast box tests. The settlement and effective
stiffness of ballast bed are studied considering the influence of loading frequencies and particles’ sharpness.
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2016)
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Figure 6. Gradation of ballast used in the DEM simulations.
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3.1. Setup of the ballast box test in DEM simulation

The settlement of ballast is found to be sensitive to its aggregate gradation [1]. Figure 6 shows the
particle size distribution (PSD) curve of ballast based on China standards 2008, which is
representative of ballast used in the field in China. Particles of each size range are first weighed
separately and mixed thoroughly. All particles are then dropped into a box of length 700mm
and width 300mm under the action of gravity. Next, after ballast particles come to static state,
Figure 7. The DEM model of the ballast box test.

Table I. Main parameters used in the simulation.

Parameters Symbols Values

Ballast density ρ 2600 kg/m3

Shear modulus G 20GPa
Poisson’s ratio ν 0.3
Coefficient of restitution ε 0.8
Coefficient of sliding friction μ 0.5
Time step dt 2.1 × 10�6 s
Total mass of ballast M 110 kg

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2016)
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a wall is applied and loaded with a sinusoidal loading at a frequency of 3Hz on the top for a
couple of seconds to make the ballast particles achieve the initial compacted state. The
amplitude of the sinusoidal loading is from 0 kN to 10 kN. Finally, the top wall is removed and
Figure 8. Influence of domain width.

Figure 9. The axial strain under various cyclic loading frequencies.
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a sleeper of length 300mm, width 300mm and mass 34 kg is placed on the top of ballast until
ballast comes to static state.

After the initial preparation, a cyclic loading is applied on the sleeper. To model the dynamic
behaviors of ballast bed on large scale, periodic boundaries are applied in the y direction of the
computational domain. When a particle passes through one side of the boundary, this particle
will re-enter on the opposite side with the same velocity and orientation. Also, only the vertical
displacement of the sleeper is considered under the action of external cyclic loading and the
resistance of ballast particles. Figure 7 shows the DEM model of the box test, in which ballast
particles are constructed with the dilating sphere of radius 4mm. Main computational
parameters are listed in Table I.

The domain width of 700mm is based on the work of McDowell [14]. In order to check the influence of
domain width, two additional widths of 1400mm and 2100mm are used, resulting in two and three sleepers
resting on ballast as shown in Figure 8(a) and (b). Figure 8(c) plots the variation of cyclic load with axial
strain at various domain widths under 6-Hz loading frequency. Axial strain is defined as the ratio of the
Figure 10. The enlarged sleeper displacement under various loading frequencies.
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Figure 11. Variation of axial strain with number of cycles at different frequencies.

Figure 12. Cyclic load versus axial strain under various loading frequencies.
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Figure 12. Continued.
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sleeper settlement to the initial thickness of ballast bed. The curves are very close and the influence of the
domain width can be ignored. The domain width of 700mm is used in the following studies.
3.2. Simulation results under various cyclic loading frequencies

The loading frequency of traffic loading is about 8–10Hz for a normal train. For a high speed train,
loading frequency may reach 30Hz [30]. Because of the increasing demand of high speed trains,
five loading frequencies of 3Hz, 6Hz, 10Hz, 20Hz and 30Hz are chosen here. The magnitude of
these cyclic loadings is in the range of [3 kN, 40 kN] with a harmonic function. Figure 9 plots the
axial strain of the sleeper. It shows that the axial strain increases continuously with fluctuation.
During the same loading period, the higher the loading frequency is, the larger the axial strain is.
Figure 13. The effective stiffness versus simulation time.
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Figure 10 gives the enlarged views of axial strain and cyclic load during the last second under various
cyclic loading frequencies. It is clear to see the strain fluctuates synchronously with the cyclic load. In
one cycle of the cyclic loading, the minimum strain corresponds to the minimum load. The minimum
strain in every cycle is defined as the permanent strain.

Figure 11 plots the variation of axial strain with number of cycles at various frequencies. The curves
become smooth after 200 cycles of loading, and a significant increase presents in strain for high values
of frequencies. The simulation results are in agreement with those presented in Indraratna et al. [6].

Figure 12 shows the load-axial strain curves, and the enlarged view of corresponding final 1-mm
settlement. During one cycle, the ballast bed presents both the elastic and the plastic deformation.
The elastic deformation is proportional to the loading magnitude, while the plastic deformation is
induced by the rearrangement and reorientation of particles. The elastic deformation is recovered
when the external force is removed. The plastic deformation is accumulated with the number of
loading cycles, which is the so-called granular ratcheting [26].

For any loading frequency, the primary loading cycles produce significant plastic deformations
because of the initial loose packing of ballast. The rate of permanent settlement increase reduces as
the number of cycle increases. This is also consistent with the laboratory data of Indraratna and
Nimbalkar [40].
Figure 14. The displacement vectors of ballast particles at the end of simulation.
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The effective stiffness is an important parameter for ballast bed. Figure 13 shows the effective stiffnessMe

as a function of simulation time. Me generally increases with simulation time. The effective stiffness is
different under different loading frequencies. The higher the frequency, the bigger the effective stiffness is.
Figure 15. The DEM models of box tests with different dilating radii.
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Figure 14 plots the displacement vectors of ballast particles at the end of the simulations. It
clearly shows the particles beneath the sleeper move downward. The amplitudes of
displacements decrease as the distance from the sleeper increases. It approaches zero at the
bottom of the ballast box. The ballast particles on both sides of the sleeper move upward, while
the particles in the middle layer move laterally. These characteristics are consistent with the
work of Lu and McDowell, in which ballast particles were generated with clumps of spheres
[7]. As the number of loading cycles increases, two vortexes are generated. The main reason is
the rearrangement process and the dense packing of ballast particles. This phenomenon is
clearer for high values of frequencies for the same simulation duration.
Figure 16. Axial strain versus simulation time of sharper models at loading frequency f = 30 Hz.

Table II. Physical parameters of DEM models with different particle shapes.

Parameters Number of particles Initial ballast bed thickness Bulk density Time step

r = 3.5mm 2453 0.268m 1954.5 kg/m3 1.9 × 10�6 s
r = 4mm 2337 0.31m 1689.7 kg/m3 2.1 × 10�6 s
r = 6mm 2112 0.30m 1746 kg/m3 2.23 × 10�6 s
r = 8mm 1672 0.27m 1940 kg/m3 2.51 × 10�6 s
Spherical model 2312 0.34m 1540.6 kg/m3 1.3 × 10�6 s

Figure 17. Axial strain of smooth model under various cyclic loading frequencies.
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Figure 18. Cyclic load versus axial strain of smooth model under various loading frequencies.
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3.3. Particles’ sharpness effect

To investigate the influence of particles’ sharpness on the dynamic behaviors of ballast, four additional
particle shapes are constructed besides dilated polyhedra with the dilating sphere of radius 4mm. They
are dilated polyhedra with the dilating radius of 3.5mm, 6mm, 8mm and spherical particles. Figure 15
shows the corresponding DEM models. Some of the physical parameters are calculated and listed in
Table II with the same particle size distribution and the same total mass.

Figure 16 illustrates the axial strain with the simulation time for dilating radius r=3.5mm, 4mm
and 6mm at loading frequency f=30Hz. Simulation results show particles with smaller dilating
radii (sharp model) generate less axial strain.

Figure 17 shows the axial strain with simulation time for dilating radius r=8mm (smooth model) at
various frequencies. The ballast bed settlements are larger compared with those of r=4mm shown in
Figure 9. Especially for the 10-Hz case, the settlement increases rapidly during the simulation time
from 23 s to 27 s. The main reason is the permanent settlement induced by the rearrangement of
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2016)
DOI: 10.1002/nag



Figure 19. The effective stiffness versus simulation time of the smooth model.

Figure 20. The sleeper falling into the ballast bed in the spherical model case.

S. JI, S. SUN AND Y. YAN
ballast particles under cyclic loading. Ballasts particles are rearranged more easily for smoother model.
The axial strain is up to 27% at the end of the simulation, which is too big. The resultant thickness of
the ballast bed is less than 0.2m, which cannot meet railroad track standards for ballast bed thickness
requirements.

Figures 18 and 19 show the load-axial strain curves and the effective stiffness of the smooth model
under various loading frequencies. The effective stiffness does not exhibit obvious change rules as
those shown in Figure 13 of the sharper model. This may be because the thinner thickness of the
ballast bed of the smooth model.

For the spherical model, the sleeper moves into the ballast bed within one period of loading and
keeps going down as shown in Figure 20. The ballast box tests under cyclic loading cannot be
numerically simulated with spheres here because spheres cannot provide necessary interlock
between particles.
4. CONCLUSIONS

The dynamic behaviors of ballast are investigated through ballast box tests with periodic boundaries
under cyclic loadings using DEM. To model the irregular shapes of ballast particles, dilated
polyhedral elements are generated with a basic polyhedron and a dilating sphere based on
Minkowski sum approach. The sharpness of the generated ballast particle is dominated by the radius
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (2016)
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of dilating sphere. The neighbor search algorithm, contact force model for this dilated polyhedron
particle model are also presented in detail.

The dynamic behaviors of ballast bed are analyzed under five various loading frequencies in terms
of axial strain and the effective stiffness of ballast bed. Vortex fields of the ballast particles in the
ballast box are observed in the DEM simulations. The influence of loading frequencies on the
ballast behaviors on macro scale is significant. Five kinds of ballast particles are constructed to
study the particles’ sharpness effect. The sharper particles generate significant inter-locking effect.
Consequently, sharper particles can reduce the permanent settlement of the ballast bed, and are
better to support the sleeper.

For future studies, more thorough parametric studies will be performed to analyze statistically the
ballast dynamic behaviors considering the ballast shape, size and the loading features. The dilated
polyhedral model with breakage will also be developed to study the ballast bed behaviors under the
influence of crush failure of ballast particles.
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